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Today’s plan
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• Historical motivation

• Tensor decomposition algorithm (I): Jennrich’s algorithm

• Applications of the tensor method

Slides is based on Ankur Moitra’s notes and Sitan Chen’s slides



Historical motivation
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Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations 

among many variables by modeling them as combinations of a few underlying latent factors.

Charles Spearman
(1863-1945)

Suppose a psychologist has the hypothesis that there are two kinds of intelligence, 

“verbal” and “mathematical”.
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Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations 

among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence, 

“verbal” and “mathematical”.
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Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations 

among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence, 

“verbal” and “mathematical”.
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≈𝑛 students

𝑚 tests 𝑘 = 2 axes
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Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations 

among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence, 

“verbal” and “mathematical”.

𝑀 = 𝑈𝑉⊤ = ෍

𝑖∈[𝑘]

𝑢𝑖𝑣𝑖
⊤

Issue: this factorization is not unique (“Rotation problem”)

• Let ෩𝑈 ← 𝑈𝑂, ෨𝑉 ← 𝑉𝑂, where 𝑂 ∈ ℝ𝑘×𝑘  is any orthogonal matrix

• ෩𝑈 ෨𝑉⊤ = 𝑈𝑂𝑂⊤𝑉⊤ = 𝑈𝑉⊤
Charles Spearman

(1863-1945)



Historical motivation
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Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations 

among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence, 

“verbal” and “mathematical”.

𝑀 = 𝑈𝑉⊤ = ෍

𝑖∈[𝑘]

𝑢𝑖𝑣𝑖
⊤

Issue: this factorization is not unique (“Rotation problem”)

• Unless we put some additional assumptions, such as rank 𝑀 = 1, 

𝑢𝑘  and {𝑣𝑘} are orthogonal, 𝑢𝑘 , 𝑣𝑘  only have non-negative entries…
Charles Spearman

(1863-1945)



Tensor can help
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𝑀 = ෍

𝑖∈[𝑘]

𝑢𝑖𝑣𝑖
⊤ = ෍

𝑖∈[𝑘]

𝑢𝑖 ⊗ 𝑣𝑖

In this lecture, we’ll see that there is no rotation problem for tensors.

Tensor product / Kronecker product

𝑇 = ෍

𝑖∈[𝑘]

𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖

If we can collect 
more data



Tensor basics
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A third-order tensor 𝑇 ∈ ℝ𝑟×𝑠×𝑡 is simply a three-dimensional array of numbers

Entries 𝑇𝑎𝑏𝑐  for 𝑎 ∈ [𝑟], 𝑏 ∈ [𝑠], 𝑐 ∈ [𝑡]

𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖  is a rank-1 tensor with entries given by

𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖 𝑎𝑏𝑐 ≔ 𝑢𝑖 𝑎 𝑣𝑖 𝑏 𝑤𝑖 𝑐

The rank of 𝑇 is the smallest number 𝑟 such that 𝑇 can be written as the sum of 𝑟 rank-1 tensors.

• For any 𝑑 × 𝑑 × 𝑑 tensor 𝑇, rank 𝑇 ≤ 𝑑2.

𝑇 = ෍

𝑖∈[𝑘]

𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖

𝑟
𝑠

𝑡

(Homework)



Tensor slicing
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We can view tensor 𝑇 as a stacked collection of matrices:

𝑇1 ≔ 𝑇 : , : , 1 , 𝑇2 ≔ 𝑇 : , : , 2 , etc

Claim 1. If rank 𝑇 ≤ 𝑟, then for all 𝑎 ∈ 𝑡 , rank 𝑇𝑎 ≤ 𝑟.

Proof. 

𝑇 = ෍

𝑖=1

𝑟

𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖  ⟹  𝑇𝑎 = ෍

𝑖=1

𝑟

𝑤𝑖 𝑎 𝑢𝑖 ⊗ 𝑣𝑖

rank-1 matrix



Tensor slicing
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We can view tensor 𝑇 as a stacked collection of matrices:

𝑇1 ≔ 𝑇 : , : , 1 , 𝑇2 ≔ 𝑇 : , : , 2 , etc

Claim 1. If rank 𝑇 ≤ 𝑟, then for all 𝑎 ∈ 𝑡 , rank 𝑇𝑎 ≤ 𝑟.

However, a low-rank tensor is not just a collection of low-rank matrices!

Claim 2. Consider a tensor 𝑇 = σ𝑖=1
𝑟 𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖. Then, for all 𝑎 ∈ 𝑡 , we have

• colspan 𝑇𝑎 ⊆ span 𝑢𝑖

• rowspan 𝑇𝑎 ⊆ span 𝑣𝑖
(Homework)



Intuition for why tensors do not suffer from the
rotation problem
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• Matrix: single “view” of {𝑢𝑖} and 𝑣𝑖

• Tensor: multiple “views”



The trouble with tensor
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Many features of matrices that we take for granted simply do not hold for tensors 

• The rank of a tensor depends on the field you are working over (i.e., rankℝ ≠ rankℂ)

𝑇 =
1 0
0 1

,
0 −1
1 0

=
1

2
1

−𝑖
⊗

1
𝑖

⊗
1

−𝑖
+

1

2
1
𝑖

⊗
1

−𝑖
⊗

1
𝑖

rankℝ 𝑇 = 3

rankℂ 𝑇 = 2



The trouble with tensor
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Many features of matrices that we take for granted simply do not hold for tensors 

• The rank of a tensor depends on the field you are working over (i.e., rankℝ ≠ rankℂ)

•  There are tensors of rank 3, but which are arbitrarily close to tensors of rank 2

𝑇 =
0 1
1 0

,
1 0
0 0

𝑆 =
𝑛 1
1 Τ1 𝑛

,
1 Τ1 𝑛

Τ1 𝑛 Τ1 𝑛2 =
1
Τ1 𝑛

⊗
1
Τ1 𝑛

⊗
𝑛
1

 𝑅 =
𝑛 0
0 0

,
0 0
0 0

=
1
0

⊗
1
0

⊗
𝑛
0

The border rank of 𝑇 is the smallest number 𝑟 such that ∀𝜖 > 0, ∃ 𝑇′ of rank ≤ 𝑟 such that 𝑇′ is entry-wise 

𝜖 close to 𝑇. 

𝑆 − 𝑅 =
0 1
1 Τ1 𝑛

,
1 Τ1 𝑛

Τ1 𝑛 Τ1 𝑛2

border rank ≠ rank for a tensor



The trouble with tensor
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Many features of matrices that we take for granted simply do not hold for tensors 

Computationally, basic linear algebraic primitives are intractable for tensors.

• Hillar-Lim: Most tensor problems are NP-hard



Tensor decomposition: Setup
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Given a tensor 𝑇 ∈ ℝ𝑑1×𝑑2×𝑑3  such that

𝑇 = ෍

𝑖=1

𝑘

𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖

Our goal is to recover the set of factors 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖 .

There are some symmetries in this decomposition.

• 𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖  and ෤𝑢𝑖 , ෤𝑣𝑖 , ෥𝑤𝑖  are equivalent if there exists a permutation 𝜋 ∈ 𝒮𝑘  such that

𝑢𝑖 ⊗ 𝑣𝑖 ⊗ 𝑤𝑖 = ෤𝑢𝜋 𝑖 ⊗ ෤𝑣𝜋 𝑖 ⊗ ෥𝑤𝜋 𝑖  ∀ 𝑖 ∈ 𝑘

Main question: when are the factors of 𝑇 are determined up to equivalence? 



Tensor decomposition: theory
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Theorem (Harshman, Jennrich).

Suppose the following conditions hold:

1) 𝑢𝑖  are linearly independent

2) 𝑣𝑖  are linearly independent

3) 𝑑3 ≥ 2 and no two 𝑤𝑖 , 𝑤𝑗  are collinear

Then the factors are uniquely determined up to equivalence, and there is a polynomial time 

algorithm to find them.



Tensor decomposition: Jennrich’s algorithm
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• Choose 𝑎, 𝑏 ∈ 𝕊𝑑3 uniformly at random

• Set

𝑀𝑎 ≔ ෍

𝑖∈ 𝑑3

𝑎𝑖𝑇 : , : , 𝑖 and 𝑀𝑏 ≔ ෍

𝑖∈ 𝑑3

𝑏𝑖𝑇 : , : , 𝑖

• Compute 𝐴 ≔ 𝑀𝑎𝑀𝑏
+ and 𝐵 ≔ 𝑀𝑎

+𝑀𝑏
⊤

• Let ො𝑢1, … , ො𝑢𝑘  be eigenvectors of 𝐴 with eigenvalues 𝜆1, … , 𝜆𝑘

• Let ො𝑣1, … , ො𝑣𝑘  be eigenvectors of 𝐵 with eigenvalues 𝜆1
−1, … , 𝜆𝑘

−1

• Solve linear system to recover ෝ𝑤1, … , ෝ𝑤𝑘:

𝑇 = ෍

𝑖=1

𝑘

ො𝑢𝑖 ⊗ ො𝑣𝑖 ⊗ ෝ𝑤𝑖

𝑑1 × 𝑑2

tensor 
contraction



Analysis of Jennrich’s algorithm
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Let 𝐷𝑎 ≔ diag 𝑎, 𝑤𝑖  and 𝐷𝑏 ≔ diag 𝑏, 𝑤𝑖

Lemma. We have that

𝑀𝑎 = 𝑈𝐷𝑎𝑉⊤ 𝑎𝑛𝑑 𝑀𝑏 = 𝑈𝐷𝑏𝑉⊤ 

Proof.

𝑀𝑎 ≔ ෍

𝑖∈[𝑑3]

𝑎𝑖𝑇 : , : , 𝑖 = ෍

𝑖∈[𝑑3]

𝑎𝑖 ෍

𝑗∈ 𝑘

𝑢𝑗 ⊗ 𝑣𝑗 𝑤𝑗 𝑖

= ෍

𝑗∈ 𝑘

𝑢𝑗 ⊗ 𝑣𝑗 𝑎, 𝑤𝑗 = 𝑈𝐷𝑎𝑉⊤

𝑈 ≔ 𝑢1 ⋯ 𝑢𝑘

𝑉 ≔ 𝑣1 ⋯ 𝑣𝑘



Analysis of Jennrich’s algorithm
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Let 𝐷𝑎 ≔ diag 𝑎, 𝑤𝑖  and 𝐷𝑏 ≔ diag 𝑏, 𝑤𝑖

Lemma. We have that

𝑀𝑎 = 𝑈𝐷𝑎𝑉⊤ 𝑎𝑛𝑑 𝑀𝑏 = 𝑈𝐷𝑏𝑉⊤ 

Using the lemma, we have

𝐴 = 𝑀𝑎𝑀𝑏
+ = 𝑈𝐷𝑎𝑉⊤ 𝑈𝐷𝑏𝑉⊤ +

= 𝑈𝐷𝑎𝑉⊤ 𝑉⊤ +𝐷𝑏
−1𝑈+

= 𝑈𝐷𝑎𝐷𝑏
−1𝑈+

Similarly, we have

𝐵 = 𝑀𝑎
+𝑀𝑏

⊤ = 𝑉⊤ +𝐷𝑎
−1𝑈+𝑈𝐷𝑏𝑉⊤ ⊤

= 𝑉⊤ +𝐷𝑎
−1𝐷𝑏𝑉⊤ ⊤

= 𝑉𝐷𝑏𝐷𝑎
−1𝑉+

𝑈 ≔ 𝑢1 ⋯ 𝑢𝑘

𝑉 ≔ 𝑣1 ⋯ 𝑣𝑘

eigendecompositions



Analysis of Jennrich’s algorithm: recover 𝑢 and 𝑣
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𝐴 = 𝑈𝐷𝑎𝐷𝑏
−1𝑈+ and 𝐵 = 𝑉𝐷𝑎𝐷𝑏

−1𝑉+

Loophole: what if the eigendecompositions of 𝐴 and 𝐵 are not unique? 

By the randomness of 𝑎 and 𝑏, and the condition 3) that no two 𝑤𝑖 , 𝑤𝑗  are collinear, we can guarantee that 

all the eigenvalues are non-zero and distinct. 

Eigenvectors: 𝑢1, … , 𝑢𝑘 𝑣1, … , 𝑣𝑘

Eigenvalues:
⟨𝑎, 𝑤1⟩

⟨𝑏, 𝑤1⟩
, … ,

⟨𝑎, 𝑤𝑘⟩

⟨𝑏, 𝑤𝑘⟩

⟨𝑏, 𝑤1⟩

⟨𝑎, 𝑤1⟩
, … ,

⟨𝑏, 𝑤𝑘⟩

⟨𝑎, 𝑤𝑘⟩

1-1 correspondence

(up to rescaling and 
permutation)

(Homework)



Analysis of Jennrich’s algorithm: recover 𝑤
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𝑇 = ෍

𝑖=1

𝑟

ො𝑢𝑖 ⊗ ො𝑣𝑖 ⊗ ෝ𝑤𝑖

• #var = 𝑟 × 𝑑3 and #eqs = 𝑑1𝑑2𝑑3

• Need to show that this linear system has a unique solution

𝑇𝑎𝑏𝑐 = ෍

𝑖

𝑢𝑖 𝑎 𝑣𝑖 𝑏 𝑤𝑖 𝑐 = 𝜆𝑎𝑏 , 𝑊𝑐,:

• Each 𝑐 ∈ 𝑑3  corresponds to an independent linear system (#var = 𝑟, #eqs = 𝑑1𝑑2)

Lemma. For any 𝑐 ∈ 𝑑3 , 𝜆𝑎𝑏
𝑎∈ 𝑑1 ,𝑏∈ 𝑑2

 spans ℝ𝑘.

known known unknown

𝜆𝑎𝑏 ≔
𝑢1 𝑎 𝑣1 𝑏

⋮
𝑢𝑘 𝑎 𝑣𝑘 𝑏

∈ ℝ𝑘



Analysis of Jennrich’s algorithm: recover 𝑤
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Lemma. For any 𝑐 ∈ 𝑑3 , 𝜆𝑎𝑏
𝑎∈ 𝑑1 ,𝑏∈ 𝑑2

 spans ℝ𝑟.

Proof.

• Suppose ∃ 𝑐 ∈ ℝ𝑘  such that σ𝑖∈ 𝑘 𝑐𝑖Λ𝑖 = 0. Wlog, assume 𝑐1 ≠ 0. 

• Note that Λ𝑖 = vec 𝑢𝑖 ⊗ 𝑣𝑖 . So σ𝑖∈ 𝑘 𝑐𝑖𝑢𝑖 ⊗ 𝑣𝑖 = 0

• Let 𝑥 ∈ ℝ𝑘  such that 𝑥, 𝑢1 ≠ 0 while 𝑥, 𝑢𝑖 = 0 for all 𝑖 > 1. (Why?)

• Then

• Thus, the solution of 𝑊𝑐,: is unique

Contradiction!

Λ ≔

𝑢1 1 𝑣1 1 ⋯ 𝑢𝑘 1 𝑣𝑘 1

𝑢1 1 𝑣1 2 ⋯ 𝑢𝑘 1 𝑣𝑘 2

⋮
𝑢1 𝑑1

𝑣1 𝑑2

⋱
⋯

⋮
𝑢𝑘 𝑑1

𝑣𝑘 𝑑2

∈ ℝ𝑑1𝑑2×𝑘 Λ𝑊𝑐,:
⊤ = 𝑇 : , : , 𝑐

𝑥⊤ ෍

𝑖∈ 𝑘

𝑐𝑖 𝑢𝑖𝑣𝑖
⊤ = 𝑐1 𝑥, 𝑢1 𝑣1

⊤ + 0 = 0 ⟹  𝑣1 = 0 



Application: Mixtures of Gaussians
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Method of Moments

• Suppose we want to learn an unknown distribution 𝑞 with parameters 𝜃. But we can only draw samples 

from it

• We can use samples to estimate the moments 𝔼𝑥∼𝑞 𝑝 𝑥  for some polynomials 𝑝

• The moments may contain enough information that allow us to “reverse-engineer” 𝜃

Karl Pearson
(1857-1936)



Application: Mixtures of Gaussians
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Setup:

• Unknown distribution in ℝ𝑑:

𝑞 = ෍

𝑖∈ 𝑘

𝜆𝑖 ⋅ 𝒩(𝜇𝑖 , Id)

• Given i.i.d. samples from 𝑞, estimate 𝜇𝑖  and 𝜆𝑖  up to small error

1. Sample 𝑖 ∈ 𝑘  with probability 𝜆𝑖

2. Sample from a Gaussian distribution 𝒩(𝜇𝑖 , Id)



Application: Mixtures of Gaussians
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𝑞 = ෍

𝑖∈ 𝑘

𝜆𝑖 ⋅ 𝒩(𝜇𝑖 , Id)

• First moment:

𝔼𝑥∼𝑞 𝑥 = ෍

𝑖

𝜆𝑖𝜇𝑖

• Third moment:

𝔼𝑥∼𝑞 𝑥⊗3 = ෍

𝑖

𝜆𝑖𝔼𝑔∼𝒩 0,Id 𝜇𝑖 + 𝑔 ⊗3

= ෍

𝑖

𝜆𝑖𝔼𝑔∼𝒩 0,Id
𝜇𝑖

⊗3 + 𝜇𝑖
⊗2 ⊗ 𝑔 + 𝜇𝑖 ⊗ 𝑔 ⊗ 𝜇𝑖 + 𝜇𝑖 ⊗ 𝑔⊗2 + 𝑔 ⊗ 𝜇𝑖

⊗2

+𝑔 ⊗ 𝜇𝑖 ⊗ 𝑔 + 𝑔⊗2 ⊗ 𝜇𝑖 + 𝑔⊗3



Application: Mixtures of Gaussians
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• Third moment:

𝔼𝑥∼𝑞 𝑥⊗3 = ෍

𝑖

𝜆𝑖𝜇𝑖
⊗3 + ෍

𝑖

𝜆𝑖𝔼𝑔∼𝒩 0,Id 𝜇𝑖 ⊗ 𝑔⊗2 + 𝑔 ⊗ 𝜇𝑖 ⊗ 𝑔 + 𝑔⊗2 ⊗ 𝜇𝑖

 = ෍

𝑖

𝜆𝑖𝜇𝑖
⊗3 + ෍

𝑖

𝜆𝑖 𝜇𝑖 ⊗ Id + Id ⊗ 𝜇𝑖 + ෍

𝑎∈ 𝑑

𝑒𝑎 ⊗ 𝜇𝑖 ⊗ 𝑒𝑎

= ෍

𝑖

𝜆𝑖𝜇𝑖
⊗3 + 𝔼𝑥∼𝑞 𝑥 ⊗ Id + Id ⊗ 𝔼𝑥∼𝑞 𝑥 + ෍

𝑎∈ 𝑑

𝑒𝑎 ⊗ 𝔼𝑥∼𝑞 𝑥 ⊗ 𝑒𝑎

Thus, we get that 

෍

𝑖

𝜆𝑖𝜇𝑖
⊗3 = 𝔼𝑥∼𝑞 𝑥⊗3 + 𝑥 ⊗ Id + Id ⊗ 𝑥 + ෍

𝑎∈ 𝑑

𝑒𝑎 ⊗ 𝑥 ⊗ 𝑒𝑎

Id



Application: Mixtures of Gaussians
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Algorithm: 

• Use samples to estimate 𝑇 = 𝔼𝑥∼𝑞 𝑥⊗3 + 𝑥 ⊗ Id + Id ⊗ 𝑥 + σ𝑎∈ 𝑑 𝑒𝑎 ⊗ 𝑥 ⊗ 𝑒𝑎

• Run Jennrich’s algorithm to recover 𝜆𝑖
Τ1 3𝜇𝑖

𝑖∈ 𝑘

• Solve a linear system to recover 𝜆𝑖:

෍

𝑖∈ 𝑘

𝜆𝑖
Τ1 3𝜇𝑖 ⋅ 𝜆𝑖

2∕3
= 𝔼𝑥∼𝑞 𝑥



Bonus: Perturbation analysis for Jennrich’s
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• Choose 𝑎, 𝑏 ∈ 𝕊𝑑3 uniformly at random

• Set

𝑀𝑎 ≔ ෍

𝑖∈ 𝑑3

𝑎𝑖𝑇 : , : , 𝑖 and 𝑀𝑏 ≔ ෍

𝑖∈ 𝑑3

𝑏𝑖𝑇 : , : , 𝑖

• Compute 𝐴 ≔ 𝑀𝑎𝑀𝑏
+ and 𝐵 ≔ 𝑀𝑎

+𝑀𝑏
⊤

• Let ො𝑢1, … , ො𝑢𝑟  be eigenvectors of 𝐴 with eigenvalues 𝜆1, … , 𝜆𝑟

• Let ො𝑣1, … , ො𝑣𝑟  be eigenvectors of 𝐵 with eigenvalues 𝜆1
−1, … , 𝜆𝑟

−1

• Solve linear system to recover ෝ𝑤1, … , ෝ𝑤𝑟:

𝑇 = ෍

𝑖=1

𝑟

ො𝑢𝑖 ⊗ ො𝑣𝑖 ⊗ ෝ𝑤𝑖

ሚ𝐴 = ෩𝑀𝑎
෩𝑀𝑏

+ = 𝐴 + 𝐸

How does the error affect
the eigenvectors of 𝐴?
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The condition number of a matrix 𝐴 is defined as

𝜅 𝐴 ≔ Τ𝜎max 𝐴 𝜎min 𝐴 = 𝜅 𝐴−1

• Consider a linear system 𝐴𝑥 = 𝑏

• Let ෤𝑥 be the perturbed solution of 𝐴𝑥 = ෨𝑏 = 𝑏 + 𝑒

• ෤𝑥 − 𝑥 = 𝐴−1 ෨𝑏 − 𝑏 = 𝐴−1𝑒

• So the relative error is:

෤𝑥 − 𝑥

𝑥
=

𝐴−1𝑒

𝐴−1𝑏
≤

𝜎max 𝐴−1 𝑒

𝜎min 𝐴−1 𝑏
= 𝜅 𝐴

෨𝑏 − 𝑏

𝑏



Perturbation analysis

August 28, 2025 30

ሚ𝐴 = 𝐴 + 𝐸 = 𝑈𝐷𝑈−1 + 𝐸

1. Show that ሚ𝐴 is diagonalizable

2. Show that the matrix that diagonalizes ሚ𝐴  is close to 𝑈

We first consider the second part

• Let ሚ𝐴 = ෩𝑈෩𝐷 ෩𝑈−1. How close is ෤𝑢𝑖 , ሚ𝜆𝑖  to 𝑢𝑖 , 𝜆𝑖 ?

• Let’s assume that ሚ𝜆𝑖 ≈ 𝜆𝑖, and the 𝜆𝑖’s are well-separated

• We can expand ෤𝑢𝑖  in the basis of {𝑢𝑖} as ෤𝑢𝑖 = σ𝑗 𝑐𝑗𝑢𝑗

• Multiplying ሚ𝐴 gives 

ሚ𝜆𝑖 ෤𝑢𝑖 = ෍

𝑗

𝑐𝑗
ሚ𝐴𝑢𝑗 = ෍

𝑗

𝑐𝑗𝜆𝑗𝑢𝑗 + ෍

𝑗

𝑐𝑗𝐸𝑢𝑗 = ෍

𝑗

𝑐𝑗𝜆𝑗𝑢𝑗 + 𝐸 ෤𝑢𝑖
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ሚ𝜆𝑖 ෤𝑢𝑖 = ෍

𝑗

𝑐𝑗
ሚ𝐴𝑢𝑗 = ෍

𝑗

𝑐𝑗𝜆𝑗𝑢𝑗 + ෍

𝑗

𝑐𝑗𝐸𝑢𝑗 = ෍

𝑗

𝑐𝑗𝜆𝑗𝑢𝑗 + 𝐸 ෤𝑢𝑖

෍

𝑗

𝑐𝑗 𝜆𝑗 − ሚ𝜆𝑖 𝑢𝑗 = −𝐸 ෤𝑢𝑖

• For any ℓ ∈ 𝑑 , let 𝑈ℓ,:
−1 be the ℓ-th row of 𝑈−1. 

• Multiplying 𝑈ℓ,:
−1 on both sides, we get:

𝑈ℓ,:
−1 ෍

𝑗

𝑐𝑗 𝜆𝑗 − ሚ𝜆𝑖 𝑢𝑗 = ෍

𝑗

𝑐𝑗 𝜆𝑗 − ሚ𝜆𝑖 𝛿ℓ𝑗 = 𝑐ℓ(𝜆ℓ − ሚ𝜆𝑖) = −𝑈ℓ,:
−1𝐸 ෤𝑢𝑖

𝑐ℓ =
𝑈ℓ,:

−1𝐸 ෤𝑢𝑖

𝜆ℓ − ሚ𝜆𝑖

≤
𝑈−1 ⋅ 𝐸 ⋅ ෤𝑢𝑖

Δ
=

𝑈−1 ⋅ 𝐸

Δ
 ∀ ℓ ≠ 𝑖

𝑐𝑖  is large since 𝑐 = 1, which means ෤𝑢𝑖 ≈ 𝑢𝑖
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Theorem (Gershgorin’s disk theorem).

The eigenvalues of 𝐴 are contained in in the following union of disks in the complex plane:

ራ

𝑖

𝒟 𝐴𝑖𝑖 , 𝑅𝑖

where 𝒟 𝑎, 𝑏 ≔ 𝑧 ∈ ℂ 𝑧 − 𝑎 ≤ 𝑏 and 𝑅𝑖 ≔ σ𝑗≠𝑖 𝐴𝑖𝑗 .

Moreover, if one disk is disjoint from others, then there must be one eigenvalue in it.
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Theorem (Gershgorin’s disk theorem).

The eigenvalues of 𝐴 are contained in in the following union of disks in the complex plane:

ራ

𝑖

𝒟 𝐴𝑖𝑖 , 𝑅𝑖

where 𝒟 𝑎, 𝑏 ≔ 𝑧 ∈ ℂ 𝑧 − 𝑎 ≤ 𝑏 and 𝑅𝑖 ≔ σ𝑗≠𝑖 𝐴𝑖𝑗 .

Moreover, if one disk is disjoint from others, then there must be one eigenvalue in it.
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Now we use Gershgorin’s disk theorem to prove that ሚ𝐴 is diagonalizable.

• Recall ሚ𝐴 = 𝐴 + 𝐸 = 𝑈𝐷𝑈−1 + 𝐸.

• We’ll show that ሚ𝐴 has distinct eigenvalues

• Consider 𝑈−1 ሚ𝐴𝑈 = 𝐷 + 𝑈−1𝐸𝑈, which has the same spectrum as ሚ𝐴

• By Gershgorin’s disk theorem, all the eigenvalues are contained in

ራ

𝑖

𝒟 𝜆𝑖 , 𝑅𝑖

• If max 𝑅𝑖 ≤
1

2
⋅ min

𝑖≠𝑗
𝜆𝑖 − 𝜆𝑗 , then we are done

• 𝑈−1𝐸𝑈 max ≤ 𝑈−1𝐸𝑈 ≤ 𝜅 𝑈 𝐸

• As long as 𝐸 ≲
Δ

𝑛𝜅(𝑈)
, ሚ𝜆𝑖  are disjoint and close to 𝜆𝑖

𝑅𝑖 ≤ 𝑛 − 1 𝜅 𝑈 𝐸

Δ≡
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• Set

𝑀𝑎 ≔ ෍

𝑖∈ 𝑑3

𝑎𝑖𝑇 : , : , 𝑖 and 𝑀𝑏 ≔ ෍

𝑖∈ 𝑑3

𝑏𝑖𝑇 : , : , 𝑖

• Compute 𝐴 ≔ 𝑀𝑎𝑀𝑏
+

• Let ො𝑢1, … , ො𝑢𝑟  be eigenvectors of 𝐴 with eigenvalues 𝜆1, … , 𝜆𝑟

We need to guarantee that:

𝐸 = ෩𝑀𝑎
෩𝑀𝑏

+ − 𝑀𝑎𝑀𝑏
+ is small,

provided ෨𝑇 ≈ 𝑇.

• Follows from more tedious perturbation bounds

ሚ𝐴 = ෩𝑀𝑎
෩𝑀𝑏

+ = 𝐴 + 𝐸
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• In the factor analysis, matrix suffers from the Rotation Problem. And we understand when and why 

tensor does not suffer.

• We introduce the Jennrich’s algorithm (or simultaneous diagonalization), which is a rigorous approach to 

decompose low-rank tensors

• We also discuss an application of learning mixture of Gaussians using the method of moments

• In the next lecture, we will talk about more practical tensor decomposition algorithms based on 

optimization
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