CS 59300 – Algorithms for Data Science Classical and Quantum approaches

Lecture 1 (08/28)

Tensor Methods (I)

https://ruizhezhang.com/course fall 2025.html

Today's plan

- Historical motivation
- Tensor decomposition algorithm (I): Jennrich's algorithm
- Applications of the tensor method

Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence, "verbal" and "mathematical".

Charles Spearman (1863-1945)

Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence, "verbal" and "mathematical".

Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence, "verbal" and "mathematical".

Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence, "verbal" and "mathematical".

$$M = UV^{\mathsf{T}} = \sum_{i \in [k]} u_i v_i^{\mathsf{T}}$$

Issue: this factorization is not unique ("Rotation problem")

- Let $\widetilde{U} \leftarrow UO$, $\widetilde{V} \leftarrow VO$, where $O \in \mathbb{R}^{k \times k}$ is any orthogonal matrix
- $\widetilde{U}\widetilde{V}^{\mathsf{T}} = UOO^{\mathsf{T}}V^{\mathsf{T}} = UV^{\mathsf{T}}$

Charles Spearman (1863-1945)

Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence, "verbal" and "mathematical".

$$M = UV^{\top} = \sum_{i \in [k]} u_i v_i^{\top}$$

Issue: this factorization is not unique ("Rotation problem")

• Unless we put some additional assumptions, such as ${\rm rank}(M)=1$, $\{u_k\}$ and $\{v_k\}$ are orthogonal, $\{u_k,v_k\}$ only have non-negative entries...

Charles Spearman (1863-1945)

Tensor can help

If we can collect more data

Tensor product / Kronecker product

In this lecture, we'll see that there is no rotation problem for tensors.

Tensor basics

A third-order tensor $T \in \mathbb{R}^{r \times s \times t}$ is simply a three-dimensional array of numbers

Entries T_{abc} for $a \in [r]$, $b \in [s]$, $c \in [t]$

$$T = \sum_{i \in [k]} u_i \otimes v_i \otimes w_i$$

 $u_i \otimes v_i \otimes w_i$ is a rank-1 tensor with entries given by

$$(u_i \otimes v_i \otimes w_i)_{abc} \coloneqq (u_i)_a (v_i)_b (w_i)_c$$

The rank of T is the smallest number r such that T can be written as the sum of r rank-1 tensors.

For any $d \times d \times d$ tensor T, rank $(T) \leq d^2$.

(Homework)

Tensor slicing

We can view tensor T as a stacked collection of matrices:

$$T_1 \coloneqq T(:,:,1), T_2 \coloneqq T(:,:,2), \text{ etc}$$

Claim 1. If $\operatorname{rank}(T) \leq r$, then for all $a \in [t]$, $\operatorname{rank}(T_a) \leq r$.

Proof.

$$T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i \quad \Rightarrow \quad T_a = \sum_{i=1}^{r} (w_i)_a (u_i \otimes v_i)$$

$$\operatorname{rank-1 \ matrix}$$

Tensor slicing

We can view tensor T as a stacked collection of matrices:

$$T_1 \coloneqq T(:,:,1), T_2 \coloneqq T(:,:,2), \text{ etc}$$

Claim 1. If $\operatorname{rank}(T) \leq r$, then for all $a \in [t]$, $\operatorname{rank}(T_a) \leq r$.

However, a low-rank tensor is not just a collection of low-rank matrices!

Claim 2. Consider a tensor $T = \sum_{i=1}^{r} u_i \otimes v_i \otimes w_i$. Then, for all $a \in [t]$, we have

- $\operatorname{colspan}(T_a) \subseteq \operatorname{span}(\{u_i\})$
- rowspan $(T_a) \subseteq \text{span}(\{v_i\})$

(Homework)

Intuition for why tensors do not suffer from the rotation problem

• Matrix: single "view" of $\{u_i\}$ and $\{v_i\}$

Tensor: multiple "views"

The trouble with tensor

Many features of matrices that we take for granted simply do not hold for tensors

• The rank of a tensor depends on the field you are working over (i.e., rank_R \neq rank_C)

$$T = \begin{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, & \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \end{bmatrix} \qquad \text{rank}_{\mathbb{R}}(T) = 3$$
$$= \frac{1}{2} \begin{bmatrix} 1 \\ -i \end{bmatrix} \otimes \begin{bmatrix} 1 \\ i \end{bmatrix} \otimes \begin{bmatrix} 1 \\ -i \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 1 \\ i \end{bmatrix} \otimes \begin{bmatrix} 1 \\ -i \end{bmatrix} \otimes \begin{bmatrix} 1 \\ i \end{bmatrix} \qquad \text{rank}_{\mathbb{C}}(T) = 2$$

The trouble with tensor

Many features of matrices that we take for granted simply do not hold for tensors

• The rank of a tensor depends on the field you are working over (i.e., $rank_{\mathbb{R}} \neq rank_{\mathbb{C}}$)

There are tensors of rank 3, but which are arbitrarily close to tensors of rank 2

$$T = \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, & \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}$$

$$S = \begin{bmatrix} \begin{bmatrix} n & 1 \\ 1 & 1/n \end{bmatrix}, & \begin{bmatrix} 1 & 1/n \\ 1/n & 1/n^2 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \\ 1/n \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 1/n \end{bmatrix} \otimes \begin{bmatrix} n \\ 1 \end{bmatrix}$$

$$S - R = \begin{bmatrix} \begin{bmatrix} n & 0 \\ 0 & 0 \end{bmatrix}, & \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} n \\ 0 \end{bmatrix}$$

$$S - R = \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1/n \end{bmatrix}, & \begin{bmatrix} 1 & 1/n \\ 1/n & 1/n^2 \end{bmatrix} \end{bmatrix}$$

The **border rank** of T is the smallest number r such that $\forall \epsilon > 0$, $\exists T'$ of rank $\leq r$ such that T' is entry-wise ϵ close to T.

The trouble with tensor

Many features of matrices that we take for granted simply do not hold for tensors Computationally, basic linear algebraic primitives are intractable for tensors.

Hillar-Lim: Most tensor problems are NP-hard

Eigenvalue over $\mathbb R$	NP-hard (Theorem 1.3)
Approximating Eigenvector over $\mathbb R$	NP-hard (Theorem 1.5)
Symmetric Eigenvalue over $\mathbb R$	NP-hard (Theorem 9.3)
Approximating Symmetric Eigenvalue over $\mathbb R$	NP-hard (Theorem 9.6)
Singular Value over \mathbb{R} , \mathbb{C}	NP-hard (Theorem 1.7)
Symmetric Singular Value over ℝ	NP-hard (Theorem 10.2)
Approximating Singular Vector over \mathbb{R}, \mathbb{C}	NP-hard (Theorem 6.3)
Spectral Norm over $\mathbb R$	NP-hard (Theorem 1.10)
Symmetric Spectral Norm over $\mathbb R$	NP-hard (Theorem 10.2)
Approximating Spectral Norm over $\mathbb R$	NP-hard (Theorem 1.11)
Nonnegative Definiteness	NP-hard (Theorem 11.2)
Best Rank-1 Approximation	NP-hard (Theorem 1.13)
Best Symmetric Rank-1 Approximation	NP-hard (Theorem 10.2)
Rank over $\mathbb R$ or $\mathbb C$	NP-hard (Theorem 8.2)

Tensor decomposition: Setup

Given a tensor $T \in \mathbb{R}^{d_1 \times d_2 \times d_3}$ such that

$$T = \sum_{i=1}^{k} u_i \otimes v_i \otimes w_i$$

Our goal is to recover the set of factors $\{(u_i, v_i, w_i)\}$.

There are some symmetries in this decomposition.

• $\{(u_i, v_i, w_i)\}$ and $\{(\tilde{u}_i, \tilde{v}_i, \tilde{w}_i)\}$ are equivalent if there exists a permutation $\pi \in \mathcal{S}_k$ such that

$$u_i \otimes v_i \otimes w_i = \widetilde{u}_{\pi(i)} \otimes \widetilde{v}_{\pi(i)} \otimes \widetilde{w}_{\pi(i)} \quad \forall i \in [k]$$

Main question: when are the factors of T are determined up to equivalence?

Tensor decomposition: theory

Theorem (Harshman, Jennrich).

Suppose the following conditions hold:

- 1) $\{u_i\}$ are linearly independent
- 2) $\{v_i\}$ are linearly independent
- 3) $d_3 \ge 2$ and no two w_i , w_j are collinear

Then the factors are uniquely determined up to equivalence, and there is a polynomial time algorithm to find them.

Tensor decomposition: Jennrich's algorithm

- Choose $a, b \in \mathbb{S}^{d_3}$ uniformly at random
- Set

$$M_a \coloneqq \sum_{i \in [d_3]} a_i T(:,:,i)$$
 and $M_b \coloneqq \sum_{i \in [d_3]} b_i T(:,:,i)$

tensor contraction

- Compute $A := M_a M_b^+$ and $B := (M_a^+ M_b^-)^T$
- Let $\hat{u}_1, \dots, \hat{u}_k$ be eigenvectors of A with eigenvalues $\lambda_1, \dots, \lambda_k$
- Let $\hat{v}_1, ..., \hat{v}_k$ be eigenvectors of B with eigenvalues $\lambda_1^{-1}, ..., \lambda_k^{-1}$
- Solve linear system to recover $\widehat{w}_1, \dots, \widehat{w}_k$:

$$T = \sum_{i=1}^{k} \hat{u}_i \otimes \hat{v}_i \otimes \hat{w}_i$$

Analysis of Jennrich's algorithm

Let
$$D_a := \operatorname{diag}(\{\langle a, w_i \rangle\})$$
 and $D_b := \operatorname{diag}(\{\langle b, w_i \rangle\})$

Lemma. We have that

$$M_a = UD_aV^{\mathsf{T}}$$
 and $M_b = UD_bV^{\mathsf{T}}$
$$U \coloneqq \begin{bmatrix} u_1 & \cdots & u_k \end{bmatrix}$$
$$V \coloneqq \begin{bmatrix} v_1 & \cdots & v_k \end{bmatrix}$$

$$U \coloneqq \begin{bmatrix} u_1 & \cdots & u_k \end{bmatrix}$$
$$V \coloneqq \begin{bmatrix} v_1 & \cdots & v_k \end{bmatrix}$$

Proof.

$$M_{a} := \sum_{i \in [d_{3}]} a_{i}T(:,:,i) = \sum_{i \in [d_{3}]} a_{i} \sum_{j \in [k]} (u_{j} \otimes v_{j})(w_{j})_{i}$$
$$= \sum_{j \in [k]} u_{j} \otimes v_{j} \langle a, w_{j} \rangle = UD_{a}V^{\mathsf{T}}$$

Analysis of Jennrich's algorithm

Let
$$D_a := \operatorname{diag}(\{\langle a, w_i \rangle\})$$
 and $D_b := \operatorname{diag}(\{\langle b, w_i \rangle\})$

Lemma. We have that

$$M_a = UD_aV^{\mathsf{T}}$$
 and $M_b = UD_bV^{\mathsf{T}}$

$$U \coloneqq \begin{bmatrix} u_1 & \cdots & u_k \end{bmatrix}$$
$$V \coloneqq \begin{bmatrix} v_1 & \cdots & v_k \end{bmatrix}$$

Using the lemma, we have

$$A = M_a M_b^+ = U D_a V^{\mathsf{T}} (U D_b V^{\mathsf{T}})^+$$

$$= U D_a V^{\mathsf{T}} (V^{\mathsf{T}})^+ D_b^{-1} U^+$$

$$= U D_a D_b^{-1} U^+ \longleftarrow \text{eigendecompositions}$$

Similarly, we have

$$B = (M_a^+ M_b)^{\mathsf{T}} = ((V^{\mathsf{T}})^+ D_a^{-1} U^+ U D_b V^{\mathsf{T}})^{\mathsf{T}} = ((V^{\mathsf{T}})^+ D_a^{-1} D_b V^{\mathsf{T}})^{\mathsf{T}} = V D_b D_a^{-1} V^+$$

Analysis of Jennrich's algorithm: recover \boldsymbol{u} and \boldsymbol{v}

Loophole: what if the eigendecompositions of A and B are not unique?

By the randomness of a and b, and the condition 3) that no two w_i , w_j are collinear, we can guarantee that all the eigenvalues are non-zero and distinct.

(Homework)

Analysis of Jennrich's algorithm: recover w

$$T = \sum_{i=1}^{r} \hat{u}_i \otimes \hat{v}_i \otimes \hat{w}_i$$
known known unknown

- #var $= r imes d_3$ and #eqs $= d_1 d_2 d_3$
- Need to show that this linear system has a unique solution

$$T_{abc} = \sum_{i} (u_i)_a (v_i)_b (\mathbf{w}_i)_c = \langle \lambda^{ab}, W_{c,:} \rangle \qquad \lambda^{ab} \coloneqq \begin{bmatrix} (u_1)_a (v_1)_b \\ \vdots \\ (u_k)_a (v_k)_b \end{bmatrix} \in \mathbb{R}^k$$

• Each $c \in [d_3]$ corresponds to an independent linear system (#var = r, #eqs = d_1d_2)

Lemma. For any $c \in [d_3]$, $\{\lambda^{ab}\}_{a \in [d_1], b \in [d_2]}$ spans \mathbb{R}^k .

Analysis of Jennrich's algorithm: recover w

Lemma. For any $c \in [d_3]$, $\{\lambda^{ab}\}_{a \in [d_1], b \in [d_2]}$ spans \mathbb{R}^r .

Proof.

$$\Lambda \coloneqq \begin{bmatrix} (u_1)_1(v_1)_1 & \cdots & (u_k)_1(v_k)_1 \\ (u_1)_1(v_1)_2 & \cdots & (u_k)_1(v_k)_2 \\ \vdots & \ddots & \vdots \\ (u_1)_{d_1}(v_1)_{d_2} & \cdots & (u_k)_{d_1}(v_k)_{d_2} \end{bmatrix} \in \mathbb{R}^{d_1 d_2 \times k} \qquad \Lambda W_{c,:}^{\mathsf{T}} = T(:,:,c)$$

- Suppose $\exists c \in \mathbb{R}^k$ such that $\sum_{i \in [k]} c_i \Lambda_i = 0$. Wlog, assume $c_1 \neq 0$.
- Note that $\Lambda_i = \text{vec}(u_i \otimes v_i)$. So $\sum_{i \in [k]} c_i u_i \otimes v_i = 0$
- Let $x \in \mathbb{R}^k$ such that $\langle x, u_1 \rangle \neq 0$ while $\langle x, u_i \rangle = 0$ for all i > 1. (Why?)
- Then $x^{\top} \sum_{i \in \mathbb{N}^{1}} c_{i} \, u_{i} v_{i}^{\top} = c_{1} \langle x, u_{1} \rangle v_{1}^{\top} + 0 = 0 \implies v_{1} = 0$ Contradiction!

• Thus, the solution of $W_{c,:}$ is unique

Method of Moments

- Suppose we want to learn an unknown distribution q with parameters θ . But we can only draw samples from it
- We can use samples to estimate the moments $\mathbb{E}_{x\sim q}[p(x)]$ for some polynomials p
- The moments may contain enough information that allow us to "reverse-engineer" θ

Karl Pearson (1857-1936)

Setup:

• Unknown distribution in \mathbb{R}^d :

$$q = \sum_{i \in [k]} \lambda_i \cdot \mathcal{N}(\mu_i, \mathrm{Id})$$

- Given i.i.d. samples from q, estimate $\{\mu_i\}$ and $\{\lambda_i\}$ up to small error
 - 1. Sample $i \in [k]$ with probability λ_i
 - 2. Sample from a Gaussian distribution $\mathcal{N}(\mu_i, \mathrm{Id})$

$$q = \sum_{i \in [k]} \lambda_i \cdot \mathcal{N}(\mu_i, \mathrm{Id})$$

First moment:

$$\mathbb{E}_{x \sim q}[x] = \sum_{i} \lambda_i \mu_i$$

Third moment:

$$\mathbb{E}_{x \sim q} [x^{\otimes 3}] = \sum_{i} \lambda_{i} \mathbb{E}_{g \sim \mathcal{N}(0, \mathrm{Id})} [(\mu_{i} + g)^{\otimes 3}]$$

$$= \sum_{i} \lambda_{i} \mathbb{E}_{g \sim \mathcal{N}(0, \mathrm{Id})} \begin{bmatrix} \mu_{i}^{\otimes 3} + \mu_{i}^{\otimes 2} \otimes g + \mu_{i} \otimes g \otimes \mu_{i} + \mu_{i} \otimes g^{\otimes 2} + g \otimes \mu_{i}^{\otimes 2} \\ +g \otimes \mu_{i} \otimes g + g^{\otimes 2} \otimes \mu_{i} + g^{\otimes 3} \end{bmatrix}$$

Third moment:

$$\mathbb{E}_{x \sim q}[x^{\otimes 3}] = \sum_{i} \lambda_{i} \mu_{i}^{\otimes 3} + \sum_{i} \lambda_{i} \mathbb{E}_{g \sim \mathcal{N}(0, \operatorname{Id})} [\mu_{i} \otimes g^{\otimes 2} + g \otimes \mu_{i} \otimes g + g^{\otimes 2} \otimes \mu_{i}]$$

$$= \sum_{i} \lambda_{i} \mu_{i}^{\otimes 3} + \sum_{i} \lambda_{i} \left(\mu_{i} \otimes \operatorname{Id} + \operatorname{Id} \otimes \mu_{i} + \sum_{a \in [d]} e_{a} \otimes \mu_{i} \otimes e_{a} \right)$$

$$= \sum_{i} \lambda_{i} \mu_{i}^{\otimes 3} + \mathbb{E}_{x \sim q}[x] \otimes \operatorname{Id} + \operatorname{Id} \otimes \mathbb{E}_{x \sim q}[x] + \sum_{a \in [d]} e_{a} \otimes \mathbb{E}_{x \sim q}[x] \otimes e_{a}$$

Thus, we get that

$$\sum_{i} \lambda_{i} \mu_{i}^{\otimes 3} = \mathbb{E}_{x \sim q} \left[x^{\otimes 3} + x \otimes \operatorname{Id} + \operatorname{Id} \otimes x + \sum_{a \in [d]} e_{a} \otimes x \otimes e_{a} \right]$$

Algorithm:

- Use samples to estimate $T = \mathbb{E}_{x \sim q} [x^{\otimes 3} + x \otimes \mathrm{Id} + \mathrm{Id} \otimes x + \sum_{a \in [d]} e_a \otimes x \otimes e_a]$
- Run Jennrich's algorithm to recover $\left\{\lambda_i^{1/3}\mu_i\right\}_{i\in[k]}$
- Solve a linear system to recover λ_i :

$$\sum_{i \in [k]} \left(\lambda_i^{1/3} \mu_i \right) \cdot \lambda_i^{2/3} = \mathbb{E}_{x \sim q}[x]$$

Bonus: Perturbation analysis for Jennrich's algorithm

- Choose $a, b \in \mathbb{S}^{d_3}$ uniformly at random
- Set

$$\widetilde{M}_a \coloneqq \sum_{i \in [d_3]} a_i \widetilde{T}(:,:,i)$$
 and $\widetilde{M}_b \coloneqq \sum_{i \in [d_3]} b_i \widetilde{T}(:,:,i)$

• Compute $A := M_a M_b^+$ and $B := (M_a^+ M_b)^\top$

 $\tilde{A} = \tilde{M}_a \tilde{M}_b^+ = A + E$

- Let \hat{u}_1 , ..., \hat{u}_r be eigenvectors of A with eigenvalues λ_1 , ..., λ_r
- Let $\hat{v}_1, ..., \hat{v}_r$ be eigenvectors of B with eigenvalues $\lambda_1^{-1}, ..., \lambda_r^{-1}$
- Solve linear system to recover $\widehat{w}_1, ..., \widehat{w}_r$:

How does the error affect the eigenvectors of A?

$$T = \sum_{i=1}^{r} \widehat{u}_i \otimes \widehat{v}_i \otimes \widehat{w}_i$$

The condition number of a matrix A is defined as

$$\kappa(A) \coloneqq \sigma_{\max}(A)/\sigma_{\min}(A) = \kappa(A^{-1})$$

- Consider a linear system Ax = b
- Let \tilde{x} be the perturbed solution of $Ax = \tilde{b} = b + e$
- $\tilde{x} x = A^{-1} (\tilde{b} b) = A^{-1} e$
- So the relative error is:

$$\frac{\|\tilde{x} - x\|}{\|x\|} = \frac{\|A^{-1}e\|}{\|A^{-1}b\|} \le \frac{\sigma_{\max}(A^{-1})\|e\|}{\sigma_{\min}(A^{-1})\|b\|} = \kappa(A) \frac{\|\tilde{b} - b\|}{\|b\|}$$

$$\tilde{A} = A + E = UDU^{-1} + E$$

- 1. Show that \tilde{A} is diagonalizable
- 2. Show that the matrix that diagonalizes $ilde{A}$ is close to U

We first consider the second part

- Let $\tilde{A} = \tilde{U}\tilde{D}\tilde{U}^{-1}$. How close is $(\tilde{u}_i, \tilde{\lambda}_i)$ to (u_i, λ_i) ?
- Let's assume that $\tilde{\lambda}_i \approx \lambda_i$, and the λ_i 's are well-separated
- We can expand \tilde{u}_i in the basis of $\{u_i\}$ as $\tilde{u}_i = \sum_j c_j u_j$
- Multiplying \tilde{A} gives

$$\tilde{\lambda}_i \tilde{u}_i = \sum_j c_j \tilde{A} u_j = \sum_j c_j \lambda_j u_j + \sum_j c_j E u_j = \sum_j c_j \lambda_j u_j + E \tilde{u}_i$$

$$\tilde{\lambda}_i \tilde{u}_i = \sum_j c_j \tilde{\lambda}_i u_j = \sum_j c_j \lambda_j u_j + \sum_j c_j E u_j = \sum_j c_j \lambda_j u_j + E \tilde{u}_i$$

$$\sum_j c_j (\lambda_j - \tilde{\lambda}_i) u_j = -E \tilde{u}_i$$

- For any $\ell \in [d]$, let $U_{\ell,:}^{-1}$ be the ℓ -th row of U^{-1} .
- Multiplying $U_{\ell,:}^{-1}$ on both sides, we get:

$$U_{\ell,:}^{-1} \sum_{j} c_j (\lambda_j - \tilde{\lambda}_i) u_j = \sum_{j} c_j (\lambda_j - \tilde{\lambda}_i) \delta_{\ell j} = c_\ell (\lambda_\ell - \tilde{\lambda}_i) = -U_{\ell,:}^{-1} E \tilde{u}_i$$

$$|c_{\ell}| = \frac{\left|U_{\ell,:}^{-1} E \tilde{u}_{i}\right|}{\left|\lambda_{\ell} - \tilde{\lambda}_{i}\right|} \leq \frac{\left\|U^{-1}\right\| \cdot \left\|E\right\| \cdot \left\|\tilde{u}_{i}\right\|}{\Delta} = \frac{\left\|U^{-1}\right\| \cdot \left\|E\right\|}{\Delta} \qquad \forall \ \ell \neq i$$

 $|c_i|$ is large since ||c||=1, which means $\tilde{u}_i \approx u_i$

Theorem (Gershgorin's disk theorem).

The eigenvalues of A are contained in the following union of disks in the complex plane:

$$\bigcup_{i} \mathcal{D}(A_{ii}, R_i)$$

where $\mathcal{D}(a,b) \coloneqq \{z \in \mathbb{C} | |z-a| \le b\}$ and $R_i \coloneqq \sum_{j \ne i} |A_{ij}|$.

Moreover, if one disk is disjoint from others, then there must be one eigenvalue in it.

Theorem (Gershgorin's disk theorem).

The eigenvalues of A are contained in the following union of disks in the complex plane:

$$\bigcup_{i} \mathcal{D}(A_{ii}, R_i)$$

where $\mathcal{D}(a,b) \coloneqq \{z \in \mathbb{C} | |z-a| \le b\}$ and $R_i \coloneqq \sum_{j \ne i} |A_{ij}|$.

Moreover, if one disk is disjoint from others, then there must be one eigenvalue in it.

Now we use Gershgorin's disk theorem to prove that \tilde{A} is diagonalizable.

- Recall $\tilde{A} = A + E = UDU^{-1} + E$.
- We'll show that \tilde{A} has distinct eigenvalues
- Consider $U^{-1}\tilde{A}U = D + U^{-1}EU$, which has the same spectrum as \tilde{A}
- By Gershgorin's disk theorem, all the eigenvalues are contained in

$$\bigcup_{i} \mathcal{D}(\lambda_i, R_i)$$

- If $\max R_i \leq \frac{1}{2} \cdot \min_{i \neq j} |\lambda_i| \lambda_j$, then we are done

$$R_i \le (n-1)\kappa(U)||E||$$

• $\|U^{-1}EU\|_{\max} \leq \|U^{-1}EU\| \leq \kappa(U)\|E\|$ • As long as $\|E\| \lesssim \frac{\Delta}{n\kappa(U)}, \{\tilde{\lambda}_i\}$ are disjoint and close to $\{\lambda_i\}$

Back to Jennrich's algorithm

Set

$$M_a \coloneqq \sum_{i \in [d_3]} a_i T(:,:,i)$$
 and $M_b \coloneqq \sum_{i \in [d_3]} b_i T(:,:,i)$

• Compute $A := M_a M_b^+$

 $\tilde{A} = \tilde{M}_a \tilde{M}_b^+ = A + E$

• Let $\hat{u}_1, \dots, \hat{u}_r$ be eigenvectors of A with eigenvalues $\lambda_1, \dots, \lambda_r$

We need to guarantee that:

$$E = \widetilde{M}_a \widetilde{M}_b^+ - M_a M_b^+$$
 is small,

provided $\tilde{T} \approx T$.

Follows from more tedious perturbation bounds

Recap

In the factor analysis, matrix suffers from the Rotation Problem. And we understand when and why
tensor does not suffer.

• We introduce the Jennrich's algorithm (or simultaneous diagonalization), which is a rigorous approach to decompose low-rank tensors

We also discuss an application of learning mixture of Gaussians using the method of moments

• In the next lecture, we will talk about more practical tensor decomposition algorithms based on optimization