CS 59300 - Algorithms for Data Science
Classical and Quantum approaches

Lecture 1 (08/28)
Tensor Methods (I}

https:Ilruizhezhang.comlcoui’se fall 2025.html


https://ruizhezhang.com/course_fall_2025.html

Today’s plan

- Historical motivation
- Tensor decomposition algorithm (l): Jennrich’s algorithm

- Applications of the tensor method

Slides is based on Ankur Moitra’s notes and Sitan Chen’s slides
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Historical motivation

Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations
among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence,
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Historical motivation

Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations
among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence,
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Historical motivation

Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations
among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence,

| n III

“verbal” and “mathematica

M=UVT = z w; v
{€Tk]

Issue: this factorization is not unique (“Rotation problem”)

- LetU « U0,V « VO, where O € R¥*¥ is any orthogonal matrix

Charles Spearman

. VT =yuoo"vT =uyT (1863-1945)
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Historical motivation

Factor analysis is a statistical method, pioneered by Charles Spearman, that explains observed correlations
among many variables by modeling them as combinations of a few underlying latent factors.

Suppose a psychologist has the hypothesis that there are two kinds of intelligence,

| n III

“verbal” and “mathematica

M=UVT = z w; v
{€Tk]

Issue: this factorization is not unique (“Rotation problem”)

- Unless we put some additional assumptions, such as rank(M) = 1,
{u, } and {v, } are orthogonal, {u;, v, } only have non-negative entries...

Charles Spearman
(1863-1945)
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Tensor can help

- Tensor product / Kronecker product

M=zuivf=2ui®vi

If we can collect ig[k] i€[k]
more data
= > L ®uew,
i€[k]

In this lecture, we’ll see that there is no rotation problem for tensors.
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Tensor basics

A third-order tensor T € R"*5*t is simply a three-dimensional array of numbers

Entries T, fora € [r], b € [s], ¢ € [t]

I = zui®vi®wi

i€[k]

u; @ v; @ w; is arank-1 tensor with entries given by

(u; @ v; ® Widape = (U)o (Vi) (Wy),

The rank of T is the smallest number r such that T can be written as the sum of r rank-1 tensors.

Forany d X d X d tensor T, rank(T) < d?.

(Homework)
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Tensor slicing

We can view tensor T as a stacked collection of matrices:

T, =TG,:,1),T,=T(,:,2), etc
Claim 1. If rank(T) < r, then for all a € [t], rank(T,) < r.

Proof.

r

T = iui QU Qw; = T, = Z(Wi)a‘(ui X Vi),

i=1 i=1

rank-1 matrix
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Tensor slicing

We can view tensor T as a stacked collection of matrices:

T, =TG,:,1),T,=T(,:,2), etc

Claim 1. If rank(T) < r, then for all a € [t], rank(T,) < r.

However, a low-rank tensor is not just a collection of low-rank matrices!

Claim 2. ConsideratensorT =Y!_;u; ® v; ® w;. Then, for all a € [t], we have
colspan(T,) S span({u;})

o rowspan(Ta) - Span({vi}) (H k)
omewor
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Intuition for why tensors do not suffer from the
rotation problem

Matrix: single “view” of {u;} and {v;}

wovwmal

ool

- Tensor: multiple “views”
hig‘l\ An5|€. v;ew/_\/\@
e — Low Angle
i —
e
| M% i

leeuwe
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The trouble with tensor

Many features of matrices that we take for granted simply do not hold for tensors

The rank of a tensor depends on the field you are working over (i.e., ranky # rankg)
11 o 0 —17
r'= "o 11’ [1 0 ]

=3[l +zlls2] e[l
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The trouble with tensor

Many features of matrices that we take for granted simply do not hold for tensors

The rank of a tensor depends on the field you are working over (i.e., ranky # rankg)

There are tensors of rank 3, but which are arbitrarily close to tensors of rank 2

=Y 2O
[ 1 1 1/n n \
A B A T A ET A EY A

S—R= 1/n
R::_o o) [ ” [O]®[0]®[n] "1 1/n] ll/n 1/n? ”

The border rank of T is the smallest number r such that Ve > 0, 3 T’ of rank < r such that T’ is entry-wise
€ closeto T.

border rank # rank for a tensor
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The trouble with tensor

Many features of matrices that we take for granted simply do not hold for tensors

Computationally, basic linear algebraic primitives are intractable for tensors.

- Hillar-Lim: Most tensor problems are NP-hard

August 28, 2025

Eigenvalue over R

NP-hard (Theorem 1.3)

Approximating Eigenvector over R

NP-hard (Theorem 1.5)

Symmetric Eigenvalue over R

NP-hard (Theorem 9.3)

Approximating Symmetric Eigenvalue over R

NP-hard (Theorem 9.6)

Singular Value over R, C

NP-hard (Theorem 1.7)

Symmetric Singular Value over R

NP-hard (Theorem 10.2)

Approximating Singular Vector over R, C

NP-hard (Theorem 6.3)

Spectral Norm over R

NP-hard (Theorem 1.10)

Symmetric Spectral Norm over R

NP-hard (Theorem 10.2)

Approximating Spectral Norm over R

NP-hard (Theorem 1.11)

Nonnegative Definiteness

NP-hard (Theorem 11.2)

Best Rank-1 Approximation

NP-hard (Theorem 1.13)

Best Symmetric Rank-1 Approximation

NP-hard (Theorem 10.2)

Rank over R or C

NP-hard (Theorem 8.2)
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Tensor decomposition: Setup

Given a tensor T € R%1%d2Xd3 g\ ch that

k
T=Yu®udw,
i=1

Our goal is to recover the set of factors {(u;, v;, w;)}.

There are some symmetries in this decomposition.

{(u;, v, w;)} and {(ii;, ¥;, W;) } are equivalent if there exists a permutation w € S, such that

U @ v @ w; = tig) Q Uiy @ Woyy Vi€ k]
Main question: when are the factors of T are determined up to equivalence?
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Tensor decomposition: theory

Theorem (Harshman, Jennrich).

Suppose the following conditions hold:

1) {u;} arelinearly independent

2) {v;} arelinearly independent

3) ds = 2andnotwo w;, w; are collinear

Then the factors are uniquely determined up to equivalence, and there is a polynomial time
algorithm to find them.
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Tensor decomposition: Jennrich’s algorithm

Choose a, b € $%3 uniformly at random

Set

M, = 2 a;T(:,:,i) and M, = 7 biz(:;:;iz tensor

i€[da] i€[ds] d, '>< d, contraction

Compute A := M,M; and B := (M} M,)"

Let 14, ..., U be eigenvectors of A with eigenvalues A4, ..., A
Let ¥y, ..., D, be eigenvectors of B with eigenvalues A7 1, ..., /1;1

Solve linear system to recover wy, ..., Wy,:

k
T=zﬁi®9i®wi
i1
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Analysis of Jennrich’s algorithm

Let D, = diag({{a, w;)}) and D, == diag({{b, w;)})

Lemma. We have that
M, = UDaVT and M, = UDbVT
Proof.

M, = z a;TC,:,0) = Z a; Z (w ®vj)(wj)i
jelk]

IE€[d3] 1€[d3]

= > 5 ®vy{aw) =UDVT

jElk]
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Analysis of Jennrich’s algorithm

Let D, = diag({{a, w;)}) and D, == diag({{b, w;)})

Lemma. We have that

U — [u1
M, = UDaVT and M, = UDbVT V= [vy
Using the lemma, we have
A=M,M; =UD,V'(UD,V")*
=UD VT(VT)*D, U
=UD,D,'U* < eigendecompositions
Similarly, we have l

B = (MM, = ((v)*Dtutup,vT) = ((N*D;1D,VT) =VD,D;1V*
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Analysis of Jennrich’s algorithm: recover u and v

A=UD,D,*U* and B=VD,D;'V*

(up to rescaling and

Eigenvectors: Ui, e, U V1, r, U _

& 1 k 1 f permutation)
Eigenvalue5° (Cl, Wl) (Cl, Wk) (b' Wl) (b) Wk)
(b,W1>’ ’<lek) (Cl,Wl)’ ,<Cl,Wk)

\ /

1-1 correspondence

Loophole: what if the eigendecompositions of A and B are not unique?

By the randomness of a and b, and the condition 3) that no two w;, w; are collinear, we can guarantee that
all the eigenvalues are non-zero and distinct.
(Homework)
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Analysis of Jennrich’s algorithm: recover w

r

T = z U Q@ U; & w;
l_'_l i=1l_'_l l_'_l
known known unknown

#var =1 X d5 and #eqs = d,d,d;

Need to show that this linear system has a unique solution
Tape = Z(ui)a(vi)b(wi)c = (1%, W) pLUE
i

Each ¢ € [d3] corresponds to an independent linear system (#var = r, #eqs = d,d,)

Lemma. For any ¢ € [ds], {1%"}4¢[4,]1p€[a,] SPaNs R¥.
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Analysis of Jennrich’s algorithm: recover w

Lemma. For any ¢ € [ds], {1%}4¢14,1p€[a,] SPaNs R

Proof.

" (ug)1(v1)1
(u1)1.(771)2

(e, (),

(up)1 (V)1
(uk)l.(vk)z

(uk)dlo(vk)dz_

€ Rd1d2xk

Suppose 3 ¢ € R¥ such that Zie[k] c;\; = 0. Wlog, assume ¢; # 0.

Note that A; = vec(u; ® v;). S0 Xy Citi @ v; = 0

Let x € R¥ such that {(x,u;) # 0 while {(x,u;) = 0 forall i > 1.

Then 5T

cuv; =cfx,u)v] +0=0 = v, =0

i€e[k]

Thus, the solution of W, . is unique

August 28, 2025
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AW,

T(:,:,c)

Contradiction!



Application: Mixtures of Gaussians

Method of Moments

- Suppose we want to learn an unknown distribution g with parameters 8. But we can only draw samples
fromit

- We can use samples to estimate the moments [E, _,[p(x)| for some polynomials p

- The moments may contain enough information that allow us to “reverse-engineer” 6

£ S
Karl Pearson
August 28, 2025 23 (1857'193 6)




Application: Mixtures of Gaussians

Setup:

Unknown distribution in R<:

q= Z Ai - N (uy,1d)
i€[k]

Given i.i.d. samples from g, estimate {y;} and {A;} up to small error
1. Sample i € [k] with probability A;
2. Sample from a Gaussian distribution NV (u;, Id)
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Application: Mixtures of Gaussians

a= ) A N(u1d)
i€[k

First moment:

x~q 2 /11/“‘1

Third moment:

Eyq[x®?] = zz g-rroi [ + 9]

_Z“E +M+Mwﬂi+ﬂi®g®z+g¢®7f?2]
— i g~N(O,Id)
l

9@ u ®g+9% @ui+
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Application: Mixtures of Gaussians

Third moment:

Eyq|x®3| = Z 2u®3 + Z ME o[ ® g®? + g Qu; @ g + 9%% Q
i o

k\ld/‘/‘
3 «okoa)

ea®.ui®ea

a€ld]

Eﬁlul + A (i @ 1d+1d @ +
[

z/llul + Eyglx] @ Id +1d @ E,.q[x] + Z eq QE,4[x] ® e,

a€eld]

Thus, we get that

Z )lll’ll = Eyq
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Application: Mixtures of Gaussians

Algorithm:

Use samples to estimate T = [Ex~q[x®3 +xQ@IAd+1dR x + Zae[d] e, ®x &K ea]

Run Jennrich’s algorithm to recover {Aﬁ/Bui} K]
i€k

> (o) 22 = Bl

i€[k]

Solve a linear system to recover A;:
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Bonus: Perturbation analysis for Jennrich’s
algorithm

Choose a, b € $%3 uniformly at random

Set
m: z ai?(:,:,i) and M, = 2 bi?(:,:,i)
i€[ds] i€[ds]
Compute A := M,M; and B := (M} M,)" A= MaMI;" =A+E
Let 4, ..., 1, be eigenvectors of A with eigenvalues 44, ..., 4.
Let ¥y, ..., D, be eigenvectors of B with eigenvalues A7, ..., A7t How does the error affect
Solve linear system to recover Wy, ..., W,.: the eigenvectors of A?

r

T=zﬁi®9i®\7|7i

i=1
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Perturbation analysis

The condition number of a matrix A is defined as
K(A) = O-max(A)/O-min(A) = K(A_l)
Consider a linear system Ax = b

Let ¥ be the perturbed solutionof Ax =b =b + e
¥x—x=A"Yb—-b)=A"e

So the relative error is:
il

12— xl| _ 4" el _ Omax(4~Dllell _
1]

lxll - NA72BIl ~ omin (A~ DIIBII

k(A)
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Perturbation analysis

A=A+E=UDU'+E
1. Show that A is diagonalizable
2. Show that the matrix that diagonalizes 4 is close to U
We first consider the second part
Let A= UDU~*. How close is (ii;, 4;) to (u;, 4;)?
Let’s assume that 1; = 4;, and the ,’s are well-separated
We can expand ; in the basis of {u;} as @; = X.; ¢ju;

Multiplying A gives
J J J J
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Perturbation analysis

J J J J

Z C](Aj — /Ti)uj = —Eﬁl

J

Forany ¢ € [d], let U; " be the ¢-th row of U™?.

Multiplying U;." on both sides, we get:

U{)_’:l z C](Aj — /Tl)u] = z C](Aj — /L)(Sg] = Cg(/lg — /T.l) = —U{Z:lEﬁi

J J
Uz Ed| _NU~ - NEN - Nzl o= - NE]
Ao — 4| ~ A A

|c;| is large since ||c|| = 1, which means #i; =~ u;

lc,| = VE+£I
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Perturbation analysis

Theorem (Gershgorin’s disk theorem).

The eigenvalues of A are contained in in the following union of disks in the complex plane:

U D(A;;, Ry)

where D(a,b) :={z € C||z—a| < b} and R; = Zj¢i|Al-j|.

Moreover, if one disk is disjoint from others, then there must be one eigenvalue in it.
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Perturbation analysis

Theorem (Gershgorin’s disk theorem).

The eigenvalues of A are contained in in the following union of disks in the complex plane:

U D(A;;, Ry)

where D(a,b) :={z € C||z—a| < b} and R; = Zj¢i|Al-j|.

Moreover, if one disk is disjoint from others, then there must be one eigenvalue in it.
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Perturbation analysis

Now we use Gershgorin’s disk theorem to prove that A is diagonalizable.
Recall A=A+ E =UDU ' +E.
We'll show that A has distinct eigenvalues
Consider U"TAU = D + U~YEU, which has the same spectrum as A
By Gershgorin’s disk theorem, all the eigenvalues are contained in

U D(4;, Ry)

A

If max Ri
i%j

IULEU || pay < ||u LEU|| < k(D)IE]
e < (n— D) E|

As long as ||E|| < — {/1 } are disjoint and close to {A }
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Back to Jennrich’s algorithm

Set

M, = z a;T(:,:,i) and M, := z b,T(:,:,i)

i€[ds] i€[ds]
Compute A := M, M, A = MaM;' — A+ FE

Let 14, ..., U, be eigenvectors of A with eigenvalues 44, ..., 4,

We need to guarantee that:
E = M, M} — M, M is small,
provided T = T.

Follows from more tedious perturbation bounds !
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Recap

In the factor analysis, matrix suffers from the Rotation Problem. And we understand when and why
tensor does not suffer.

- We introduce the Jennrich’s algorithm (or simultaneous diagonalization), which is a rigorous approach to
decompose low-rank tensors

- We also discuss an application of learning mixture of Gaussians using the method of moments

- In the next lecture, we will talk about more practical tensor decomposition algorithms based on
optimization
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